西门子6ES71936BP200BB0ET200现货
- 产品价格:
- 88
- 更新时间:
- 2018-05-08
- 点击关注:
- 90
- 产品型号:
- 6ES71936BP200BB0
- 产品品牌:
- 西门子
- 供应商:
- 上海滕桦电气设备有限公司
- 联系人:
- 夏 工
- 手机:
- 18314768271
- 电话:
- 18314768271
- 在线咨询:
- 742729986
- 传真:
- 86-021-67355123
- 所在地区:
- 上海 上海
- 地址:
- 金山区枫泾镇环东一路65弄7号2865室
详细信息
西门子6ES71936BP200BB0ET200现货
德国制造: 现货 联 系 人: 夏依明《夏工》 24小时联系手机: 137 613 887 49(微信同号)
全新原装: 参数
质量保证: 保修 电 话: 021-6131 1931 在 线 商 务 QQ: 742 729 986
价格优势: 特价 公司库存大量S7-200-300-400-1200-1500,电缆
高效工程组态成就高效自动化
⑴风扇运转保护 变频器的内装风扇是箱体内部散热的主要手段,它将保证控制电路的正常工作。所以,如果风扇运转不正常,应立即进行保护;
⑵逆变模块散热板的过热保护 逆变模块是变频器内发生热量的主要部件,也是变频器中最重要而又最脆弱的部件。所以,各变频器都在散热板上配置了过热保护器件;
⑶制动电阻过热保护 制动电阻的标称功率是按短时运行选定的。所以,一旦通电时间过长,就会过热。这时,应暂停使用,待冷却后再用。或选用较大一点功率电阻;
⑷冷却风道的入口和出口不得堵塞,环境温度也可能高于变频器的允许值。如果还有问题,你可以打电话给我们。
在VVVF的实施,有两种基本的调制方法:
1.脉幅调制 (PAM) 逆变器所得交流电压的振幅值等于直流电压值(Um=Ud)。因此,实现变频也是变压的最容易想到的方法,便是在调节频率的同时,也调节直流电压;
这种方法的特点是,变频器在改变输出频率的同时,也改变了电压的振幅值,故称为脉幅调制,常用PAM(Pulse Amplitude Modulation)表示。 PAM需要同时调节两部分:整流部分和逆变部分,两者之间还必须满足Ku和Kf间的一定的关系,故其控制电路比较复杂。
2.脉宽调制(PWM) 把每半个周期内,输出电压的波形分割成若干个脉冲波,每个脉冲的宽度为T1,每两个脉冲间的间隔宽度为T2,那么脉冲的占空比Υ=T1/(T1+T2)。
这时,电压的平均值和占空比成正比,所以在调节频率时,不改变直流电压的幅值,而是改变输出电压脉冲的占空比,也同样可以实现变频也变压的效果。当电压周期增大(频率降低),电压脉冲的幅值不变,而占空比在减小,故平均电压降低。
此法的特点是,变频器在改变输出频率的同时,也改变输出电压的脉冲占空比(幅值不变)故称为脉宽调制,常用PWM(Pulse width modulation)表示。
PWM只须控制逆变电路便可实现,与PAM相比,控制电路简化了许多。
不论是PAM,还是PWM,其输出电压和电流的波形都是非正玄波,具有许多高次谐波成分。为了使输出电流的波形接近与正玄波,又提出了正玄波脉宽调制的方式。下次接着讲SPWM 各位朋友大家好,今天我要为大家讲的是:正弦波脉宽调制(SPWM)
1、QPWM的概念 在进行脉宽调制时,使脉冲系列的占空比按正弦规律来安排。当正弦值为最大值时,脉冲的宽度也最大,而脉冲间的间隔则最小,反之,当正弦值较小时,脉冲的宽度也小,而脉冲间的间隔则较大,这样的电压脉冲系列可以使负载电流中的高次谐波成分大为减小,称为正弦波脉宽调制。
SPWM脉冲系列中,各脉冲的宽度以及相互间的间隔宽度是由正弦波(基准波或调制波)和等腰三角波(载波)的交点来决定的。具体方法如后所述。
2、单极性SPWM法 (1)调制波和载波:曲线①是正弦调制波,其周期决定于需要的调频比kf,振幅值决定于ku,曲线②是采用等腰三角波的载波,其周期决定于载波频率,振幅不变,等于ku=1时正弦调制波的振幅值,每半周期内所有三角波的极性均相同(即单极性)。 调制波和载波的交点,决定了SPWM脉冲系列的宽度和脉冲音的间隔宽度,每半周期内的脉冲系列也是单极性的。 (2)单极性调制的工作特点:每半个周期内,逆变桥同一桥臂的两个逆变器件中,只有一个器件按脉冲系列的规律时通时通时断地工作,另一个完全截止;而在另半个周期内,两个器件的工况正好相反,流经负载ZL的便是正、负交替的交变电流。
3、双极性SPWM法
(1)调制波和载波:调制波仍为正弦波,其周期决定于kf,振幅决定于ku,中曲线①,载波为双极性的等腰三角波,其周期决定于载波频率,振幅不变,与ku=1时正弦波的振幅值相等。 西门子6ES71936BP200BB0ET200现货
调制波与载波的交点决定了逆变桥输出相电压的脉冲系列,此脉冲系列也是双极性的,但是,由相电压合成为线电压(uab=ua-ub;ubc=ub-uc;uca=uc-ua)时,所得到的线电压脉冲系列却是单极性的。
(2)双极性调制的工作特点:逆变桥在工作时,同一桥臂的两个逆变器件总是按相电压脉冲系列的规律交替地导通和关断,毫不停息,而流过负载ZL的是按线电压规律变化的交变电流。
4、实施SPWM的基本要求
(1)必须实时地计算调制波(正弦波)和载波(三角波)的所有交点的时间坐标,根据计算结果,有序地向逆变桥中各逆变器件发出“通”和“断”的动作指令。
(2)调节频率时,一方面,调制波与载波的周期要同时改变(改变的规律本文不作介绍);另一方面,调制波的振幅要随频率而变,而载波的振幅则不变,所以,每次调节后,所胶点的时间坐标都 必须重新计算。 要满足上述要求,只有在计算机技术取得长足进步的20世纪80年代才有可能,同时,又由于大规模集成电路的飞速发展,迄今,已经有能够产生满足要求的SPWM波形的专用集成电路了。 西门子420变频器PID调试:总结在变频器page5-13.14详细讲解在说明书page10-84.85..86.87.88.89.90.91.92.93.94 重要几个参数为1.P0004改为22. page10-6
2.P2200改为1 允许PID控制器投入
3. P2257 PID设定值的斜坡上升时间
p2258 PID设定值的斜坡下降时间
P2261 PID设定值的滤波时间常数
P2264 PID反馈信号
P2265 PID反馈滤波时间常数
P2267 PID反馈信号的上限值
P2268 PID反馈信号的下限值
P2269 PID反馈信号的增益
P2270 PID传感器的反馈型式
P2280 PID比例增益系数
P2285 PID积分时间
P2291 PID输出上限
P2292 PID输出下限
P2293 PID限幅值的斜坡上升/下降时间 噪声与振动及其对策
采用变频器调速,将产生噪声和振动,这是变频器输出波形中含有高次谐波分量所产生的影响。随着运转频率的变化,基波分量、高次谐波分量都在大范围内变化,很可能引起与电动机的各个部分产生谐振等。 噪声问题及对策
(1)用变频器传动电动机时,由于输出电压电流中含有高次谐波分量,气隙的高次谐波磁通增加,故噪声增大。电磁噪声由以下特征:由于变频器输出中的低次谐波分量与转子固有机械频率谐振,则转子固有频率附近的噪声增大。变频器输出中的高次谐波分量与铁心机壳轴承架等谐振,在这些部件的各自固有频率附近处的噪声增大。
变频器传动电动机产生的噪声特别是刺耳的噪声与PWM控制的开关频率有关,尤其在低频区更为显著。一般采用以下措施平抑和减小噪声:在变频器输出侧连接交流电抗器。如果电磁转矩有余量,可将U / f定小些。采用特殊电动机在较低频的噪声音量较严重时,要检查与轴系统(含负载)固有频率的谐振。 西门子6ES71936BP200BB0ET200现货
(2) 振动问题及对策 变频器工作时,输出波形中的高次谐波引起的磁场对许多机械部件产生电磁策动力,策动力的频率总能与这些机械部件的固有频率相近或重合,造成电磁原因导致的振动。对振动影响大的高次谐波主要是较低次的谐波分量,在PAM方式和方波PWM方式时有较大的影响。但采用正弦波PWM方式时,低次的谐波分量小,影响变小。
减弱或消除振动的方法,可以在变频器输出侧接入交流电抗器以吸收变频器输出电流中的高次谐波电流成分。使用PAM方式或方波PWM方式变频器时,可改用正弦波PWM方式变频器,以减小脉动转矩。从电动机与负载相连而成的机械系统,为防止振动,必须使整个系统不与电动机产生的电磁力谐波。 负载匹配及对策 生产机械的种类繁多,性能和工艺要求各异,其转矩特性不同,因此应用变频器前首先要搞清电动机所带负载的性质,即负载特性,然后再选择变频器和电动机。负载有三种类型:恒转矩负载、风机泵类负载和恒功率负载。不同的负载类型,应选不同类型的变频器。
(3) 恒转矩负载 恒转矩负载又分为摩擦类负载和位能式负载。 摩擦类负载的起动转矩一般要求额定转矩的150%左右,制动转矩一般要求额定转矩的100%左右,所以变频器应选择具有恒定转矩特性,而且起动和制动转矩都比较大,过载时间和过载能力大的变频器,如FR-A540系列。 位能负载一般要求大的起动转矩和能量回馈功能,能够快速实现正反转,变频器应选择具有四象限运行能力的变频器,如FR-A241系列。
(4) 风机泵类负载 风机泵类负载是典型的平方转矩负载,低速下负载非常小,并与转速平方成正比,通用变频器与标准电动机的组合最合适。这类负载对变频器的性能要求不高,只要求经济性和可靠性,所以选择具有U/f=const控制模式的变频器即可,如FR-A540(L)。如果将变频器输出频率提高到工频以上时,功率急剧增加,有时超过电动机变频器的容量,导致电动机过热或不能运转,故对这类负载转矩,不要轻易将频率提高到工频以上。
(5) 恒功率负载 恒功率负载指转矩与转速成反比,但功率保持恒定的负载,如卷取机、机床等。对恒功率特性的负载配用变频器时,应注意的问题:在工频以上频率范围内变频器输出电压为定值控制,,所以电动机产生的转矩为恒功率特性,使用标准电动机与通用变频器的组合没有问题。而在工频以下频率范围内为U/f定值控制,电动机产生的转矩与负载转矩又相反倾向,标准电动机与通用变频器的组合难以适应,因此要专门设计。
发热问题及对策
变频器发热是由于内部的损耗而产生的,以主电路为主,约占98%,控制电路占2%。为保证变频器正常可靠运行,必须对变频器进行散热。主要方法有:
(1) 采用风扇散热:变频器的内装风扇可将变频器箱体内部散热带走。
(2) 环境温度:变频器是电子装置,内含电子元件机电解电容等,所以温度对其寿命影响较大。通用变频器的环境运行温度一般要求-10℃~+50℃,如果能降低变频器运行温度,就延长了变频器的使用寿命,性能也稳定。我们一直忙于变频器的保养。⑴可以延长变频器的使用期⑵电器方面我们可以说减少维修率⑶也可以体现公司的管理,公司的形象!我司保养的具体方案如下:1、 变频器须解体,查看内部是否有异常现象.(如:镙丝松动、焊锡脱落、器件松动、器件烧焦、烧煳现象。) 2、 检查变频器内部易老化器件,如:风扇,功率器件,功率电容,及印板老化现象。 3、 清理变频器内部粉尘,油污,腐蚀性及导体杂质。对主要印板如:主控板,驱动板,开关电源板。采用全新品进口电子清洁剂进行喷洗,去除其老化层及导电物质。 4、 对变频器主要控制部分进行先进的加膜处理。起到防尘,防老化,防导电物质,防水,及腐蚀性物质。
德国制造: 现货 联 系 人: 夏依明《夏工》 24小时联系手机: 137 613 887 49(微信同号)
全新原装: 参数
质量保证: 保修 电 话: 021-6131 1931 在 线 商 务 QQ: 742 729 986
价格优势: 特价 公司库存大量S7-200-300-400-1200-1500,电缆
高效工程组态成就高效自动化
(1) AEG Multiverter122/150-400变频器在启动时直流回路过压跳闸
这台变频器并非每次启动都会过压跳闸。检查时发现变频器在上电但没有合闸信号时,直流回路电压即达360V,该型变频器直流回路的正极串接1台接触器,在有合闸信号时经过预充电过程后吸合,故怀疑预充电回路IGBT性能不良,断开预充电回路IGBT,情况依旧。用万用表检查变频器输出端时其对地阻值很小,查至现场发现电机接线盒被水淋湿,干燥处理后,变频器工作正常。
由于电机接线盒被水淋湿,直流回路负极的对地漏电流经接线盒及变频器逆变器中的续流二极管给直流回路的电容充电,这种情况合闸通常理解应该为过流跳闸而实际为过压跳闸。本人认为,启动时变频器输出电压和频率是逐渐上升的,电机被水淋湿后,会造成输出电流的变化率很高,从而引起直流回路过压。
(2) 控制辊道电机的AEG Maxiverter-170/380变频器出现速度反馈值大于速度设定值经观察发现:
a) 在轧钢过程中不存在这种情况,当钢离开辊道后,才出现这种情况;
b) 当速度反馈值大于速度设定值时,直流回路电压为额定电压的125%,超过115%的极限设定值;
c) 变频器的进线电压已超过上限; 西门子6ES71936BP200BB0ET200现货
在轧钢过程中,该变频器控制的辊道电机将升速,当钢离开辊道后辊道电机速度降至原来的速度,因这台变频器未装设制动装置,减速时是通过电压调节器限制制动电流以保持直流回路电压不超过115%的极限设定值(缺省值),因进线电压过高,直流回路电压超过了设定的极限值,在减速时电压调节器起作用,造成制动电流很小,电机转速降不下来,而在轧钢时,电网的负载加重,直流回路电压低于115%的极限设定值,制动功能恢复正常。在当时无法降低电网电压的情况下,将直流回路电压极限设定值增至127% 后,变频器工作正常。在停产检修时,我们根据电网的情况改变了变压器的档位,使变频器的进线电压在允许的范围内,此后变频器工作正常。
(3) AEG Multiverter22/27-400变频器上电后,操作面板上的液晶显示屏显示正常,但ready指示灯不亮,变频器不能合闸
查看变频器菜单中的故障记录时未发现有故障,而对操作面板上各按键的操作在事件记录中则有记录。检查变频器内A10主板、A22电源板上的LED指示灯均正常,用试电笔测变频器的进线电源,发现有一相显示不正常,用万用表测量三相结果为:Vab=390V,Vac=190V,Vbc=190V。经检查系进线端子排处接触不良。
ready指示灯是变频器内各种状态信息的综合反映,当它不亮时可提示维护人员注意变频器尚未就绪 。此时在进线电源不正常时变频器的故障记录中未能反映未就绪的原因,可能与电路的设计有关。
(4) 调试过程中变频器启动后即过流跳闸
变频器供货方与被控设备的供货方因沟通上的原因,在容量上不匹配(电机功率为30kW)。将变频器的控制模式选为矢量控制,在输入电机参数时,变频器自动将电机的额定电流60A限定在45A,电机铭牌上无功率因数的大小,按变频器手册的要求,将其设定为0,在作自动辨识(P088=1)后启动电机时,变频器过流跳闸。考虑到匹配上的原因,将控制模式改为V/F控制,情况依旧。后检查电机参数时,发现功率因数为1.1,将其改为0.85后,变频器工作正常。
因容量不匹配,变频器依据输入的电机参数进行计算时会产生不正确的结果,在遇到这种情况而暂时无法解决匹配问题时,一定要在自动辨识后检查是否存在不合适的参数。
(5) 6SE70系列变频器的PMU面板液晶显示屏上显示字母“E”
出现这种情况时,变频器不能工作,按P键及重新停送电均无效,查操作手册又无相关的介绍,在检查外接DC24V电源时,发现电压较低,解决后,变频器工作正常。
变频器操作手册上的故障对策表中介绍的皆为较常见的故障,在出现未涉及的一些的代码时应对变频器作全面检查。
(6) MM420/MM440变频器的AOP面板仅能存储一组参数
变频器选型手册中介绍AOP面板中能存储10组参数,但在用AOP面板作第二台变频器参数的备份时,显“存储容量不足”。解决办法如下:
a) 在菜单中选择“语言”项;
b) 在“语言”项中选择一种不使用的语言;
c) 按Fn+Δ键选择删除,经提示后按P键确认;
这样,AOP面板就可存储10组参数。造成这种现象的原因可能是设计时AOP面板中的内存不够。
(7) ABB ACS600变频器在运行时直流回路过压跳闸
该变频器配置有制动斩波器和制动电阻,但外方调试人员在调试时将电压控制器选择为ON而未使用制动斩波器和制动电阻。在直流回路过压跳闸后将斩波器和制动电阻投入,结果跳闸更加频繁。变频器操作手册上对直流回路过压原因的解释通常有2点:
a) 进线电压过高;
b) 减速时间太短;
因该变频器已投入运行2个月,且跳闸时进线电压在允许的范围之内,其它变频器工作正常,结合以前处理变频器故障时对直流回路过压的认识,认为在使用电压控制器调节回馈电流防止直流回路过压的情况下,负载电流的变化率过大是引起过压的一个重要原因,到现场查看被控设备时,发现有一块物料卡在传送带的间隙中,清除后,变频器工作正常。拆开变频器外壳检查,发现制动斩波器上设有三档进线电压选择装置(400V、500V、690V)以适应不同的进线电压,其中短接环插在690V档上,这样就造成制动斩波器和制动电阻投入工作的门槛值过高而在进线电压为400V的ACS600变频器中未起作用,将短接环移至400V档,通过减少减速时间试验,制动斩波器和制动电阻工作正常。
5例变频器故障处理过程 (1) 变频器驱动电机抖动 在接修一台安川616PC5-5.5kW变频器时,客户送修时标明电机行抖动,此时第一反应是输出电压不平衡.在检查功率器件后发现无损坏,给变频器通电显示正常,运行变频器,测量三相输出电压确实不平衡,测试六路数出波形,发现W相下桥波形不正常,依次测量该路电阻,二极管,光耦。发现提供反压的一二极管击穿,更换后,重新上电运行,三相输出电压平衡,修复。 (2) 变频器频率上不去 在接修一台普传220V,单相,1.5kW变频器时,客户标明频率上不去,只能上到20Hz,此时第一想到的是有可能参数设置不当,依次检查参数,发现最高频率,上限频率都为60Hz,可见不是参数问题,又怀疑是频率给定方式不对,后改成面板给定频率,变频器最高可运行到60Hz,由此看来,问提出在模拟量输入电路上,检查此电路时,发现一贴片电容损坏,更换后,变频器正常。 (3) 变频器跳过流 在接修一台台安N2系列,400V,3.7kW变频器时,客户标明在起动时显示过电流。在检查模块确认完好后,给变频器通电,在不带电机的情况下,启动一瞬间显示OC2,首先想到的是电流检测电路损坏,依次更换检测电路,发现故障依然无法消除。于是扩大检测范围,检查驱动电路,在检查驱动波形时发现有一路波形不正常,检查其周边器件,发现一贴片电容有短路,更换后,变频器运行良好。 (4) 变频器整流桥二次损坏 在接修一台LG SV030IH-4变频器时,检查时发现整流桥损坏,无其它不良之处,更换后,带负载运行良好。不到一个月,客户再次拿来。检查时发现整流桥再次损坏,此时怀疑变频器某处绝缘不好,单独检查电容,正常。单独检查逆变模块,无不良症状,检查各个端子与地之间也未发现绝缘不良问题,再仔细检查,发现直流母线回路端子P-P1与N之间的塑料绝缘端子有炭化迹象,拆开端子查看,果然发现端子碳化已相当严重,从安全角度考虑,更换损坏端子,变频器恢复正常运行,正常运行已有半年多。 (5) 变频器小电容炸裂 在接修一台三肯SVF7.5kW变频器时,检测时发现逆变模块损坏,更换模块后,变频器正常运行。由于该台机器运行环境较差,机器内部灰尘堆积严重,且该台机器使用年限较长,决定对它进行除尘及更换老化器件的维护。以提高其使用寿命,器件更换后,给变频器通电,上电一瞬间,只听“砰”的一声响动,并伴随飞出许多碎屑,断开电源,发现C14电解电容炸裂,此刻想到的是有可能电容装反,于是根据其标识再装一次,再次上电,电容又一次炸裂。于是进一步检查其线路,发现线路与电容标识无法对上,于是将错就错,把电容装反,再次上电,运行正常。这一点在后来送修的相同的机器得以证实。 3 结束语 变频器故障千变万化,相当复杂,唯有认真,唯有学习,方可能解除 !
1)变频器充电起动电路故障 通用变频器一般为电压型变频器,采用交—直—交工作方式,即是输入为交流电源,交流电压三相整流桥整流后变为直流电压,然后直流电压经三相桥式逆变电路变换为调压调频的三相交流电输出到负载。当变频器刚上电时,由于直流侧的平波电容容量非常大,充电电流很大,通常采用一个起动电阻来限制充电电流,常见的变频起动两种电路,如图 1所示。充电完成后,控制电路通过继电器的触点或晶闸管将电阻短路,起动电路故障一般表现为起动电阻烧坏,变频器报警显示为直流母线电压故障,一般设计者在设计变频器的起动电路时,为了减少变频器的体积选择起动电阻,都选择小一些,电阻值在10~50Ω,功率为10~50W。 当变频器的交流输入电源频繁通时,或者旁路接触器的触点接触不良时,以及旁路晶闸管的导通阻值变大时,都会导致起动电阻烧坏。如遇此情况,可购买同规格的电阻换之,同时必须找出引出电阻烧坏的原因。如果故障是由输入侧电源频率开合引起的,必须消除这种现象才能将变频器投入使用;如果故障是由旁路继电器触点或旁路晶闸管引起,则必须更换这些器件。 2)变频器无故障显示,但不能高速运行 我厂一台变频器状态正常,但调不到高速运行,经检查,变频器并无故障,参数设置正确,调速输入信号正常,上电运行时测试出现变频器直流母线电压只有 450V左右,正常值为580~600V,再测输入侧,发现缺了一相,故障原因是输入侧的一个空气开关的一相接触不良造成的,为什么变频器输入缺相不报警仍能在低频段工作呢?实际上变频器缺一相输入时,是可以工作的,多数变频器的母线电压下限为400V,即是当直流母线电压降至400V以下时,变频器才报告直流母线低电压故障。当两相输入时,直流母线电压为380*1.2=452V400V。当变频器不运行时,由于平波电容的作用,直流电压也可达到正常值,新型的变频器都是采用PWM控制技术,调压调频的工作在逆变桥完成,所以在低频段输入缺相仍可以正常工作,但因为输入电压低输出电压低,造成异步电机转矩低,频率上不去。 3)变频器显示过流 出现这种故障显示时,首先检查加速时间参数是否太短,力矩提升参数是否太大,然后检查负载是否太重。如果无这些现象,可以断开输出侧的电流互感器和直流侧的霍尔电流检测点,复位后运行,看是否出现过流现象,如果出现的话,很可能是 1PM模块出现故障,因为1PM模块内含有过压过流、欠压、过载、过热、缺相、短路等保护功能,而这些故障信号都是经模块控制引脚的输出Fn引脚传送到微控器的,微控器接收到故障信息后,一方面封锁脉冲输出,另一方面将故障信息显示在面板上,一般更换1PM模块。 4)变频器显示过压故障 变频器出现过压故障,一般是雷雨天气,由于雷电串入变频器的电源中,使变频器直流侧的电压检测器动作而跳闸,在这种情况下,通常只须断开变频器电源 1min左右,再合上电源,即可复位;另一种情况是变频器驱动大惯性负载,就出现过压现象,因为这种情况下,变频器的减速停止属于再生制动,在停止过程中,变频器的输出频率按线性下降,而负载电机的频率高于变频器的输出频率,负载电机处于发电状态,机械能转化为电能,并被变频器直流侧的平波电容吸收,当这种能量足够大时,就会产生所谓的“泵升现象”,变频器直流侧的电压会超过直流母线的最大电压而跳闸,对于这种故障,一是将减速时间参数设置长些或增大制动电阻或增加制动单元;二是将变频器的停止方式设置为自由停车。 5)电机发热,变频器显示过载 对于已经投入运行的变频器如果出现这种故障,就必须检查负载的状况;对于新安装的变频器如果出现这种故障,很可能是 V/F曲线设置不当或电机参数设置有问题,如一台新装变频器,其驱动的是一台变频电机,电机额定参数为220V/50Hz,而变频器出厂时设置为380V/50Hz,由于安装人员没有正确设定变频器的V/F参数,导致电机运行一段时间后转子出现磁饱和,致使电机转速降低,发热而过载。所以在新变频器使用以前,必须设置好该参数,另外使用变频器的无速度传感器矢量控制方式时,没有正确的设置负载电机的额定电压、电流、容量等参数,也会导致电机热过载,还有一种情形是设置的变频器载波率过高时,也会导致电机发热过载,最后一种情形是电气设计者设计变频器常常在低频段工作,而没有考虑到在低频段工作的电机散热变差的问题,致使电机工作一段时间后发热过载,对于这种,需加装散热装置。
西门子SIMATIC系列PLC,诞生于1958年,经历了C3,S3,S5,S7系列,已成为应用非常广泛的可编程控制器。
西门子(SIMATIC)PLC的6代西门子(SIMATIC)PLC的6代
1、西门子公司的产品最早是1975年投放市场的SIMATIC S3,它实际上是带有简单操作接口的二进制控制器。
2、1979年,S3系统被SIMATIC S5所取代,该系统广泛地使用了微处理器。
3、20世纪80年代初,S5系统进一步升级——U系列PLC,较常用机型:S5-90U、95U、100U、115U、135U、155U。
4、1994年4月,S7系列诞生,它具有更国际化、更高性能等级、安装空间更小、更良好的WINDOWS用户界面等优势,其机型为:S7-200、300、400。
5、1996年,在过程控制领域,西门子公司又提出PCS7(过程控制系统7)的概念,将其优势的WINCC(与WINDOWS兼容的操作界面)、PROFIBUS(工业现场总线)、COROS(监控系统)、SINEC(西门子工业网络)及控调技术融为一体。
6、西门子公司提出TIA(Totally Integrated Automation)概念,即全集成自动化系统,将PLC技术溶于全部自动化领域。
由最初发展至今,S3、S5系列PLC已逐步退出市场,停止生产,而S7系列PLC发展成为了西门子自动化系统的控制核心,而TDC系统沿用SIMADYN D技术内核,是对S7系列产品的进一步升级,它是西门子自动化系统最尖端,功能最强的可编程控制器。
产品分类编辑
可编程控制器是由现代化生产的需要而产生的,可编程序控制器的分
西门子PLCS7-200系列西门子PLCS7-200系列
类也必然要符合现代化生产的需求。
一般来说可以从三个角度对可编程序控制器进行分类。其一是从可编程序控制器的控制规模大小去分类,其二是从可编程序控制器的性能高低去分类,其三是从可编程序控制器的结构特点去分类。
控制规模
可以分为大型机、中型机和小型机。
西门子PLCS7-300系列西门子PLCS7-300系列 西门子6ES71936BP200BB0ET200现货
小型机: 小型机的控制点一般在256点之内,适合于单机控制或小型系统的控制。
西门子小型机有S7-200:处理速度0.8~1.2ms ;存贮器2k ;数字量248点;模拟量35路 。
中型机:中型机的控制点一般不大于2048点,可用于对设备进行直接控制,还可以对多个下一级的可编程序控制器进行监控,它适合中型或大型控制系统的控制。
西门子中型机有S7-300:处理速度0.8~1.2ms ;存贮器2k ;数字量1024点;模拟量128路 ;网络PROFIBUS;工业以太网;MPI。
大型机:大型机的控制点一般大于2048点,不仅能完成较复杂的算术运
西门子PLCS7-400系列西门子PLCS7-400系列
算还能进行复杂的矩阵运算。它不仅可用于对设备进行直接控制,还可以对多个下一级的可编程序控制器进行监控。
西门子大型机有S7-400 :处理速度0.3ms / 1k字;
存贮器512k ;I/O点12672;
控制性能
可以分为高档机、中档机和低档机。
低档机
这类可编程序控制器,具有基本的控制功能和一般的运算能力。工作速度比较低,能带的输入和输出模块的数量比较少。
比如,德国SIEMENS公司生产的S7-200就属于这一类。
中档机
这类可编程序控制器,具有较强的控制功能和较强的运算能力。它不仅能完成一般的逻辑运算,也能完成比较复杂的三角函数、指数和PID运算。工作速度比较快,能带的输入输出模块的数量也比较多,输入和输出模块的种类也比较多。
比如,德国SIEMENS公司生产的S7-300就属于这一类。
高档机
这类可编程序控制器,具有强大的控制功能和强大的运算能力。它不仅能完成逻辑运算、三角函数运算、指数运算和PID运算,还能进行复杂的矩阵运算。工作速度很快,能带的输入输出模块的数量很多,输入和输出模块的种类也很全面。这类可编程序控制器可以完成规模很大的控制任务。在联网中一般做主站使用。
比如,德国SIEMENS公司生产的S7-400就属于这一类。
结构
整体式
整体式结构的可编程序控制器把电源、CPU、存储器、I/O系统都集成
plc结构plc结构
在一个单元内,该单元叫做作基本单元。一个基本单元就是一台完整的PLC。
控制点数不符合需要时,可再接扩展单元。整体式结构的特点是非常紧凑、体积小、成本低、安装方便。
组合式
组合式结构的可编程序控制器是把PLC系统的各个组成部分按功能分成
plc组合plc组合
若干个模块,如CPU模块、输入模块、输出模块、电源模块等等。其中各模块功能比较单一,模块的种类却日趋丰富。比如,一些可编程序控制器,除了-些基本的I/O模块外,还有一些特殊功能模块,像温度检测模块、位置检测模块、PID控制模块、通讯模块等等。组合式结构的PLC特点是CPU、输入、输出均为独立的模块。模块尺寸统一、安装整齐、I/O点选型自由、安装调试、扩展、维修方便。
叠装式
叠装式结构集整体式结构的紧凑、体积小、安装方便和组合式结构的I/O点搭配灵话、安装整齐的优点于一身。它也是由各个单元的组合构成。其特点是CPU自成独立的基本单元(由CPU和一定的I/O点组成),其它I/O模块为扩展单元。在安装时不用基板,仅用电缆进行单元间的联接,各个单元可以一个个地叠装。使系统达到配置灵活、体积小巧。
详细介绍编辑
1.SIMATIC S7-200 PLC S7-200 PLC是超小型化的PLC,它适用于各行各业,各种场合中的自动检测、监测及控制等。S7-200 PLC的强大功能使其无论单机运行,或连成网络都能实现复杂的控制功能。 S7-200PLC可提供4个不同的基本型号与8种CPU可供选择使用。
2.SIMATIC S7-300 PLC S7-300是模块化小型PLC系统,能满足中等性能要求的应用。各种单独
西门子PLC之S7家族西门子PLC之S7家族
的模块之间可进行广泛组合构成不同要求的系统。与S7-200 PLC比较,S7-300 PLC采用模块化结构,具备高速(0.6~0.1μs)的指令运算速度;用浮点数运算比较有效地实现了更为复杂的算术运算;一个带标准用户接口的软件工具方便用户给所有模块进行参数赋值;方便的人机界面服务已经集成在S7-300操作系统内,人机对话的编程要求大大减少。SIMATIC人机界面(HMI)从S7-300中取得数据,S7-300按用户指定的刷新速度传送这些数据。S7-300操作系统自动地处理数据的传送;CPU的智能化的诊断系统连续监控系统的功能是否正常、记录错误和特殊系统事件(例如:超时,模块更换,等等);多级口令保护可以使用户高度、有效地保护其技术机密,防止未经允许的复制和修改;S7-300 PLC设有操作方式选择开关,操作方式选择开关像钥匙一样可以拔出,当钥匙拔出时,就不能改变操作方式,这样就可防止非法删除或改写用户程序。具备强大的通信功能,S7-300 PLC可通过编程软件Step 7的用户界面提供通信组态功能,这使得组态非常容易、简单。S7-300 PLC具有多种不同的通信接口,并通过多种通信处理器来连接AS-I总线接口和工业以太网总线系统;串行通信处理器用来连接点到点的通信系统;多点接口(MPI)集成在CPU中,用于同时连接编程器、PC机、人机界面系统及其他SIMATIC S7/M7/C7等自动化控制系统。
3. SIMATIC S7-400 PLC S7-400 PLC是用于中、高档性能范围的可编程序控制器。 S7-400 PLC采用模块化无风扇的设计,可靠耐用,同时可以选用多种级别(功能逐步升级)的CPU,并配有多种通用功能的模板,这使用户能根据需要组合成不同的专用系统。当控制系统规模扩大或升级时,只要适当地增加一些模板,便能使系统升级和充分满足需要。
4工作原理编辑
当PLC投入运行后,其工作过程一般分为三个阶段,即输入采样、用户程序执行和输出刷新三个阶段。完成上述三个阶段称作一个扫描周期。在整个运行期间,PLC的CPU以一定的扫描速度重复执行上述三个阶段。
输入采样
在输入采样阶段,PLC以扫描方式依次地读入所有输入状态和数据,并将它们存入I/O映象区中的相应得单元内。输入采样结束后,转入用户程序执行和输出刷新阶段。在这两个阶段中,即使输入状态和数据发生变化,I/O映象区中的相应单元的状态和数据也不会改变。因此,如果输入是脉冲信号,则该脉冲信号的宽度必须大于一个扫描周期,才能保证在任何情况下,该输入均能被读入。
用户程序执行
在用户程序执行阶段,PLC总是按由上而下的顺序依次地扫描用户程序(梯形图)。在扫描每一条梯形图时,又总是先扫描梯形图左边的由各触点构成的控制线路,并按先左后右、先上后下的顺序对由触点构成的控制线路进行逻辑运算,然后根据逻辑运算的结果,刷新该逻辑线圈在系统RAM存储区中对应位的状态;或者刷新该输出线圈在I/O映象区中对应位的状态;或者确定是否要执行该梯形图所规定的特殊功能指令。
即,在用户程序执行过程中,只有输入点在I/O映象区内的状态和数据不会发生变化,而其他输出点和软设备在I/O映象区或系统RAM存储区内的状态和数据都有可能发生变化,而且排在上面的梯形图,其程序执行结果会对排在下面的凡是用到这些线圈或数据的梯形图起作用;相反,排在下面的梯形图,其被刷新的逻辑线圈的状态或数据只能到下一个扫描周期才能对排在其上面的程序起作用。
输出刷新
当扫描用户程序结束后,PLC就进入输出刷新阶段。在此期间,CPU按照I/O映象区内对应的状态和数据刷新所有的输出锁存电路,再经输出电路驱动相应的外设。这时,才是PLC的真正输出。
同样的若干条梯形图,其排列次序不同,执行的结果也不同。另外,采用扫描用户程序的运行结果与继电器控制装置的硬逻辑并行运行的结果有所区别。当然,如果扫描周期所占用的时间对整个运行来说可以忽略,那么二者之间就没有什么区别了。